Hospital Conversational Agent using LangChain, GraphRaG, Neo4j and Llama-3

Finding a good hospital or doctor can be complex, and internet searches or personal references often make this process inefficient. To tackle this, I developed a conversational AI Agent that automates the retrieval of essential healthcare information, including hospital details, wait times, customer reviews, visits, and doctor profiles. The system integrates OpenAI's GPT-4 and LLaMA 3 models for advanced natural language processing and uses LangChain to manage conversational flows. Neo4j graph databases effectively model the complex relationships between entities, while Retrieval-Augmented Generation (Graph-RAG) to extract relevant data and generate appropriate responses. This solution embeds data efficiently, streamlining decision-making for users.

AI Multi-Agent Content Creation Workflow using crew.ai

Developed multi-agent AI system for automated content creation using crew.ai and Llama 3 via Groq API. Implemented 3-agent sequential workflow: Content Planner, Writer, and Editor.
Skills Applied: Python, crew.ai, LangChain, Groq API
Key Features:
- Agent-specific roles and goals
- Task-based workflow: planning, writing, editing
- LLM integration for intelligent content generation
- Crew orchestration for seamless agent collaboration
Outcomes: - Streamlined content creation
- Improved SEO optimization
- Consistent quality and brand adherence

Ante mattis
interdum dolor

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis magna etiam.

April 14, 2017

Tempus sed
nulla imperdiet

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis magna etiam.

April 11, 2017

Odio magna
sed consectetur

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis magna etiam.

April 7, 2017

Augue lorem
primis vestibulum

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis magna etiam.